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The streamlines due to  a stokeslet on the axis in a finite, semi-infinite and infinite 
cylinder are obtained together with the case of a Stokes-doublet and source-doublet 
in an infinite cylinder. I n  the infinite and semi-infinite cylinder examples an  infinite 
set of toroidal eddies are obt,ained. The eddies alternate in sign and the magnitude 
of the stream function decays exponentially with distance from the driving singularity. 
I n  the finite cylinder a primary interior eddy adjacent to the singularity is always 
obtained and, depending on location of the singularity within the cylinder and the 
ratio of cylinder length to radius, a finite number of secondary interior eddies. I n  the 
case of long cylinders, the eddies are generated along the axis, whereas, for squat 
cylinders, secondary eddies occur in the radial direction. The interior eddies emerge 
from the corner as the length of the cylinder is increased. Moffatt corner eddies exist 
but they are very much smaller than the interior eddies. 

1. Introduction 
The study of flow fields where inertial forces are negligible in comparison to viscous 

forces, known as Stokes $ow, is becoming increasingly important in areas of biology, 
medicine, engineering, physics and chemistry. This flow regime is characterized by a 
very small numerical value for the Reynolds number R, defined as 

( 1 )  
where p is the density and ,u the dynamic viscosity of the ambient fluid and U and L 
are characteristic velocity and length scales respectively. Two principal cases exist 
where we obtain very small values of R;  they are when ( a )  we have a very viscous fluid 
(e.g. tar) or ( b )  the length and relative velocity scales are very small (e.g. red blood cells, 
micro-organisms, suspensions of small particles). 

Often we need to study the resulting flow field due to  the movement of a ‘particle’ 
near a boundary. To date, most mathematical analysis has been concerned ,with 
‘infinite’ fluids, that is infinite in all directions, while a limited amount of analysis has 
been directed towards ‘ half-space ’ or infinite cylinder ,problems (see, for example, 
Happel & Brenner 1965; Aderogba 1976; Blake 1971). Theoretical modelling of flow 
fields generated in either semi-infinite or finite cylinders has generally received scant 
attention in the literature until recently. 

Many practical problems involve the slow motion of particles near cylindrical 
boundaries which are either infinite, semi-infinite or finite in extent. Some examples 
are the motion of red blood cells in arterioles, capillaries and venules, sedimentation 
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FIGURE 1. Illustrations of the different geometries and notation used in the paper: (a) half-space ; 
( b )  infinite cylinder; (c) semi-infinite cylinder; (d )  finite cylinder; (e) corner eddies. 

and filtration of colloidal-sized particles and the flow fields generated by micro- 
organisms between a microscope slide and coverslip. The last-mentioned topic 
is the one of particular interest to us, as current hydrodynamical theory has been 
unable to explain the flow fields due to sessile organisms observed under a microscope 
(see, e.g., Lunec 1975). Recent observations by Sleigh & Barlow (1976) on Vorticella 
shows that this organism can generate an axisymmetric vortex. Closer observation 
suggests that the size and shape of the vortex is very clearly determined by the 
geometry and dimensions of the container. It can be shown by using the ideas of 
Liron & Mochon (1976) that for a microscope slide and coverslip close together the far 
field for a point force (i.e. the sessile organism) parallel to the slide reduces to a two- 
dimensional source-doublet (i.e. results for a Hele-Shaw cell), which has circular 
streamlines. Flow fields around motile organisms appear to be much better understood, 
especially ciliates (Lighthill 1952; Blake 1973; Keller & Wu 1977) where the far field 
is a three-dimensional source-doublet. 

Of particular relevance to t.his paper is the classic work of Rayleigh (1920), Dean & 
Montagnon (1949) and Moffatt (1964) on flow in a corner. Moffatt showed the existence 
of an infinite set of eddies in the corner when the angle subtended by the plane walls is 
less than 146" and the driving flow is asymmetric about the bisecting plane. His 
results for the case when the walls meet a t  an angle of 90" are applicable to the case of 
flow in the corners of the finite and semi-infinite cylinders considered in this paper. 
We obtain what we may call interior viscous toroidal eddies of differing sizes depending 
on the radius and length of the cylinder as well as the Moffatt corner eddies mentioned 
above. For an infinite and semi-infinite cylinder we obtain an infinite set of interior 
eddies ; the eddies alternate in sign with their magnitude decreasing exponentially 
as we move away from the driving singularity. This result compares with Moffatt's 
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example when the angle between the planes is zero. For a finite cylinder, the number 
of interior eddies depends on the ratio of the length to radius. In  the case of the finite 
cylinders we call the eddies adjacent to the stokeslet aprimary eddy and other interior 
eddies we classify as secondary eddies. Several examples are considered at the end of 
the paper. 

Recent papers by Fitzgerald (1972), Davis & O'Neill (1977), Yo0 & Joseph (1978), 
Liu & Joseph (1978) and Liron & Shahar (1978) have shown the existence of viscous 
eddies in confined geometries. 

In  the next four sections, we will investigate the flow fields (streamlines) for the 
following axisymmetric cases : ( a )  half-space, (b)  infinite cylinder, (c)  semi-infinite 
cylinder and ( d )  finite cylinders. The respective geometries are shown in figure 1. The 
stokeslet is the fundamental singularity of the Stokes flow equations: 

V p  = pV2u + F&(X),) 
v . u  = 0. 

Here p is the pressure, u the Cartesian velocity vector, F6(x) a point force a t  the 
origin where 6(x) is the three-dimensional Dirac delta function. Equation (2) will be 
solved, subject to the usual no-slip conditions, in the geometries shown in figure 1. The 
solution will consist of the fundamental singularity plus the additional complementary 
solution for the required geometry. For the half-space fluid, the image system (outside 
the flow field) will contain stokeslets, Stokes-doublets and source-doublets. It is also of 
interest to caIculate the streamlines due to these singularities in an infinite cylinder. 

The mathematical analysis, in the next sections, will involve the solution of the 
following axisymmetric equation, in cylindrical co-ordinates, for the complementary 
stream function @, 

where 
D4$= 0, (3a)  

a2 1 a a2 

ar2 r ar ax2' 
DZ=----+- 

Here, the axial velocity u and radial velocity v are defined by 

,=9! v=--- 1 a@ 
r a r '  r ax' 

Methods of solution are via Fourier transforms and Fourier-Bessel series. 

2. Half-space problem 
The solution to the problem depicted in figure 1 (a) of a vertical point force above a 

plane no-slip boundary is well known (Lorentz 1907; Oseen 1928). An explicit expres- 
sion for the velocity and pressure field in terms of the stokeslet in the fluid and the 
image system comprising a stokeslet, Stokes-doublet and a source doublet can be 
found in Blake (1971) and is also illustrated in figure 1 (a). 

In terms of the stream function @ (scaled with respect to Srp), the solution for the 
case when h = 1 (this is the only length scale, so without loss of generality we can set 
it  eaual to 1 )  is 
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FIGURE 2(a, b,  c). For legend see next page. 
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FIGURE 2. (a )  Axisymmetric streamlines in a half-space due to a vertical point force. The first 
few of the infinite set of toroidal eddies found in an infinite cylinder owing to  the following 
singularities are shown in (b )  due to a stokeslet, in ( c )  a Stokes-doublet and in (d )  a source-doublet. 

The first and second terms are stokeslets within the half-space and at the image 
point respectively while the third term is a combination of a Stokes-doublet and a 
source-doublet. The resulting streamlines are shown in figure 2 (a) .  The maximum 
value of @ occurs a t  r = 1.056 and x = 1-248 and has the value = 0.397. An 
acoustical analogy discussed by Lighthill (1978, figure 83) has similar streamlines to 
those shown in figure 2 (a).  

3. Infinite cylinder 
Our eventual aim is to obtain a semi-analytic solution for a stokeslet in a semi- 

infinite cylinder. With a knowledge of the image system for the half-space problem 
it  is prudent for us to obtain the solutions for a stokeslet, Stokes-doublet and a 
source-doublet in an infinite cylinder in terms of the stream function $. 

(u) Stokeslet 

As outlined in the introduction, the method of analysis will be to find the comple- 
mentary solution to the fundamental singularity in the particular geometry, in this 
case, the infinite cylinder. Thus the stream function $ will consist of two parts: 

$ = $ O + @ l ,  (5a) 

$o = r2 / [x2+r2]$  (5b) 

$=a$. /ar= 0 on r = a .  (6) 

where $o is the stream function for a stokeslet a t  the origin in an infinite fluid, 

and 
conditions require that 

is the complementary function which to be calculated. The no-slip boundary 

A method of solution is to use Fourier transforms. To avoid branch points, we need to 
include the transform of @o in the inverse Fourier transform. We then find the solution 
for $ is 

m 

n= -m 
n+ 0 

4 = z K,(r) exp [--a, I.I/al, ( 7 4  



It is easy to show that a_, = a,, the complex conjugate. In (7c) and (7d) the Bessel 
function arguments are 01,. Because of the properties of the Bessel functions (7 a) may 
be expressed as 

W 

The first thirty roots a, of (7e) are listed in Friedmann, Gillis &, Liron (1968). We 
observe that $ decays exponentially with axial distance x. We also observe that, since 
the a, are complex, in the far field where a, dominates there must exist closed periodic 
eddies. The wavelength of the eddies in the far field is h = na/Im (a,) N 2 . 1 5 ~ .  Stream- 
lines for $ are shown in figure 2 (b). Indentical results to this have been obtained by 
Liron & Shahar (1978). 

(b) Stokes-doublet 

The stream function I,+ on this case can be obtained trivially by taking the derivative 
in the x direction. We obtain 

co 

$ ( r , ~ )  = 2Re C an -sgn(x) (Anr2Jo(~nr/a)+B,rJl(anr/a))ex~[-~nlxl/aI, (9) 
n = ~  a 

where A ,  and Bn are defined in (7c) and (7d) respectively and a, in (7e). Streamlines 
are shown in figure 2 (c). 

(c) Source-doublet 

Using an identical procedure to that employed in obtaining the stokeslet, we obtain 
the following expression for $ in the case of a source-doublet : 

where Cn = -an/a3J:, 

and a, satisfies (7e). Streamlines are shown in figure 2(d). 

4. Semi-infinite cylinder 
In principle we can obtain an analytic solution for the semi-infinite cylinder problem 

by using all eigenfunctions and suitable transformations on the boundaries. However, 
this involves lengthy and tedious algebraic manipulation. A much simpler method is to 
approximate the boundary conditions on the plane boundary at x = 0 in figure 1 (c). 
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With a knowledge of the solution for a stokeslet in an infinite cylinder from the 
previous section, we use the following analytic expression to represent the solution in 
the semi-infinite cylinder (x 2 0 ) ,  

W 

$(r ,  X) = Z 
n = - w  

n l 0  

+En$n(r)ex~ [-an(x+ h)/aI, (1la) 

( l i b )  

[Kn(r) ( ~ X P  [ - an I - h I /a1 - ~ X P  [ - an (X + h)/aI 

where Kn(r)  is defined in (7b) and 

$n(r) = r2Jo(an ./a) -ar Jo(an) Jl(an r/a)/J1(an). 

The eigenfunction $n(r) and equation (7e) for 01, come from the boundary conditions 
on r = a. The stokeslet is located at (0 ,h)  and the complementary singularities a t  
(0, - h).  The boundary conditions on x = 0 are 

The En are obtained by a least squares approximation of these boundary conditions 
( 12). We define . .  

and as usual we require that 

as 
- = O  k = & l , + 2 , + 3  ,.... 
aEk 

Since the stream function $ is real, we may assume that E-n = En, the overbar implying 
the complex conjugate. This now allows us to reduce the summation of ( 1  1 a )  to the 
positive integers. 

Using the summation convention, application of the condition (13b) to (13a) yields 
the following infinite matrix for Cn 

FknE,=Pk k =  f 1 , + 2 , + 3  ,..., (14a) 

(14b) where F k n  = exp [ - (h/a) ( a k  + an)] ( 1 +- a::) loa: $k $n dr 

and 

n+O 

The integrals in (14b) and (14c) can be evaluated in terms of Bessel functions of the 
first kind. The infinite set of linear equations is truncated to a 2 N  x 2 N  system. 
However, we can reduce the system to a N x N set by making use of the following 
relationships, 

F-k-n =Fkn, FPkn = FkVn, =pk, k = 1 , 2 , 3  ,.... (15) 

On substitution of these values of En into (1  1 a )  the stream function $ can be obtained 
as a function of position. 

In  the calculations we used N = 30 and found the En to decay exponentially with n. 
As expected, the maximum value of $ occurs on the plane x = h and has magnitude 
O( 1). The approximated value of the stream function on the plane boundary is O( 
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FI~URE 3. Toroidal eddies found in a semi-infinite cylinder for h = 0.5. 

In  figure 3, an example of the streamlines for a semi-infinite cylinder is illustrated. In  
the far field an infinite set of eddies of alternating sign is obtained similar to the infinite 
cylinder case. The number of interior eddies between the stokeslet and plane no-slip 
boundary is determined by the value of h/a. Moffat corner eddies are obtained near 
the junction of the cylindrical and plane boundaries. 

5. Finite cylinder 
The problem of a stokeslet in a finite cylinder is solved by using two different methods. 

In  the first approach we use an extension of the semi-analytic least squares approach 
of the last section while in the second we use a finite difference approximation to the 
stream function equations. In  the third part of this section we briefly discuss Moffatt 
corner eddies as they are applicable to a finite cylinder. 

(i) Semi-anulytic least squares method 

Again we suppose the stokeslet is located at  (0, h)  and that boundary conditions (6) 
apply on r = a and (12) apply on x = 0 and H (see figure 1 d ) .  In  this case we use the 
following expression for $ (0 < x < H), 

00 

$(r ,  2) = X 
n=--00 
n+O 

[Kn(r)  exp [ - an I x - hj /.I 

+$n(r) ( G a e x ~  II-aaxlaI+Hnex~ [an(x-H)/aI)I, (‘6) 

where Kn is defined in (7 b) ,  $, in (1  1 b )  and a, in ( 7  e).  The Gn and H, are obtained by 
approximating the boundary conditions on x = 0 and H. For the case of the finite 
cvlinder . we define 

where the subscript indicates where the stream function or its derivative is evaluated. 
In  this case we require that 

a 8  a 6  - = 0 and - = 0 k = k l ,  + 2 , . . . .  
aGk aHk 

We assume that G-, = 
In  this case we obtain 

and H-, = z. 
Rkn Gn + Skn Hn = Qk 

and &,G,+Rk,H, = !& k , n  = f 1, + 2, ..., 
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where 

+ (1 + y) exp [ - (ha, -I- H a k ) / a ] )  J: : #k K ,  dr. (18e) 

If we add and subtract the equations in (18a) we obtain two sets of linear equations 

en = u k ,  Bkn w k  = &, ( 1 9 4  

where 

By this manipulation we can reduce the size of the truncated matrix (for N positive 
terms in the series) from a 4N x 4N to a 2N x 2N system. As before for the semi- 
infinite cylinder by using the complex conjugate of matrix elements, the size of the 
matrix can be reduced to a N x N system. We then solve (19a) for the complex values 
of en and w, and hence G, and H, which are then substituted into (1 6) to obtain the 
streamlines . 

(ii) Finite difference approximation. 

Streamlines due to a stokeslet in a finite cylinder were also obtained by a finite difference 
approximation (FDA). As in the case of the infinite cylinder example we split the 
stream function into two parts, 

where $o is the solution for a stokeslet in an infinite fluid and is the complementary 
solution. We obtain +1 by using a FDA. In  this example the stokeslet is located a t  
(0, h) so $o is defined as follows, 

$ = $0 + $1, ( 2 0 4  

( 2 0 b )  
r2 

$0 = [r2 + ( x  - h)214 . 

The complementary stream function +l satisfies the axisymmetric stream function 
in cylindrical co-ordinates defined in (3  a )  and (3  b ) .  The boundary conditions on $1 are 

and 
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Because of symmetry on the x-axis, we also require that 

( 2 1 4  
au 
ar 

$1= 0 and - = 0 on r = 0, 

where u is the axial velocity and is defined in ( 3  c ) .  
In  the FDA we solve the coupled equations, 

D2# = 0 ( 2 2 4  

and D%@ = q5 = -rw, ( 2 2 b )  

where q5 is related to the vorticity w by the expression on the right-hand side of ( 2 2 b ) .  
As with the stream function $, we divide q5 into the stokeslet q50 and complementary 
component q51 : 

@ = q50+91, ( 2 3 4  

where 

We solve ( 2 2 a )  and ( 2 2 b )  by the method of successive over-relaxation (SOR). The 
discretization for nodal elements q5i,j = q3(ri,,xj) and $i,j = @ ( r i , x j )  ( 2  < i < M -  1 ;  
2 < j < N - 1 )  used in the computations is as follows, 

R ri Ti  

Yi T i 4  r i b  
#i, j = +is j + - [ - +i+1, j - yi di, j + - 4i-1, j + P S ~ ,  j+1+ p"i, 1-11 ( 2 4 a )  

and 

where Ax = H / ( N  - l ) ,  Ar = a / ( M  - l ) ,  ,I3 = Ax/Ar, Cl is the relaxation parameter and 
yi is the normalization parameter defined as 

The boundary conditions for $l can be obtained from (21  a ,  b ,  c ) .  However we have to 
approximate the boundary conditions for except on r = 0 where it is identically 
equal to zero. Methods for overcoming this difficulty are discussed in Roache (1972) .  
A Taylor series expansion about the boundary points is used to the required accuracy 
to derive the approximation for q5. We use the simplest first-order approximation in 
our calculations, as follows : 

and 

I n  these expressions we are using the definitions of $ in ( 2 0 a )  and q5 in ( 2 3 a )  so that a 
minor rearrangement is needed to obtain the boundary approximations for #l. One 
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FIQURE 4. The finite number of toroidal interior eddies found in a finite cylinder of varying 
length and stokeslet location. (a) h = 1.0, H = 2.0; (a) h = 0-5, H = 2.0; (c) h = 1.0, H = 4.0; 
( d )  h = 5.0, H = 10.0 (only half of the cylinder iB shown): (e) h = 0.3, H = 0.6; (f) h = 0.26, 
H = 0.5; (9)  h = 0.2, H = 0.4. 
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difficulty occurs, in that our initial estimates for on the boundary are generally only 
accurate to O(1). We overcome this by using under-relaxation techniques on the 
iterates for boundary values of 4,. For example in the case of x = 0, we use 

Another minor difficulty was in obtaining estimates for the corner values of q5 (i.e. 
and # M N ) .  Two approaches were used to obtain these values (a) by extrapolation from 
thenearby boundary values of 4 and (b)  by analytical methods based on Moffatt's (1964) 
paper which showed that both values are identically zero. Because of the importance 
of the corner-eddies and the values of corner vorticity the germane ideas of Moffatt's 
paper will be reproduced in the next part of this section. The SOR numerical solution 
of the problem produces eddies in the corner but it cannot be expected to reproduce 
accurately the complexity of the streamlines. Furthermore the SOR approach cannot 
be expected to calculate the stream function accurately for long cylinders (H/u 2 4.0) 
because of the exponential decrease in the stream function, unless we have an extremely 
fine mesh. However, in the case of squat cylinders ( H l u  < 1.0) the series solution is 
not desirable because of the slow convergence near the singularity, so here the FDA 
is used. 

In  the regions of joint validity the least squares ( N  = 15,30) and SOR results are 
identical within the designed accuracy. In  the SOR computations the optimal values 
of SZ and a depend on h/u and H / u  and the number of grid points employed ( M  = 11-41, 
N = 21-81). In  figure 4(a )  only one primary symmetric interior eddy occupies the 
entire cylinder with the exception of the corner eddies (marked with an asterisk on 
figure 4 (a) ) .  In figure 4 ( b )  the streamlines are skewed because the stokeslet is located 
closer to one end. In  figure 4 (c) we see the existence of two large interior eddies (primary 
and secondary) while in figure 4 ( d )  five interior eddies have developed (because of the 
length of the cylinder and symmetry only half of it is shown in the diagram). In the last 
three diagrams of figure 4, the emergence of eddies in the radial direction is illustrated 
for squat cylinders. In  figure 4 ( e ) ,  no secondary eddies exist, but in figure 4 (f) we 
observe that a small interior eddy has appeared near the outer cylindrical boundary. 
In  figure 4 (9)  a substantial secondary eddy has developed of similar linear dimensions 
to the primary eddy. 

(iii) Corner (MoSfatt) eddies 
One of the cases Moffatt (1964) studied was the flow field generated in the corner 
between two planes due to an asymmetric outer flow field. Near the corners in this 
current problem the boundaries may be approximated by two planes at 90" to each 
other (corresponds to a= 45" in Moffatt's paper). The geometry of the problem is 
illustrated in figure 1 e ) .  We define 6 as the angle from bisector of the two planes (hence 
0 = f 45" corresponds to the no-slip 'boundaries) and p = ( x 2  +y2)B, the local radial 
co-ordinate. 

Near the corner the stream function can be adequately represented by the first term 
in an infinite series, 

1c. N A' (y [cos A,O cos $n(h, - 2) - cos (A, - 2) 0 cos $77 A,], 
P O  



Viscous toroidal eddies in a cylinder 221 

0 0.1 0.2 0.3 0.4 
‘i 

FIGURE 5. The corner eddy structure. 

where po is a scale length and A, is the smallest eigenvalue of the transcendental 
equation 

sin&rp = -p, where p = A,- 1.  

This equation can be easily solved using Newton’s method, yielding 

( 2 7 b )  

A, = 3*7396+ 1.1908i. 

Now since $I is directly proportional to the vorticity it must behave like O ( P ~ I - ~ )  in the 
corners. As the Re (A,) is greater than 2, q5 must tend to zero a t  these points. Therefore 
we have equated q5 to zero in the corners in the numerical solution of the equations. 

Graphs of the corner eddy structure are shown in figure 5 (illustrative only, not same 
scale as other diagrams). We observe the exponential decrease in the magnitude of the 
stream function for the corner eddies. The obvious comment should be made that the 
size of the corner eddies is very much less than that of the interior eddies. 

The author acknowledges the many helpful comments made on this work by 
Dr Nadav Liron and Dr Frank deHoog. 
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